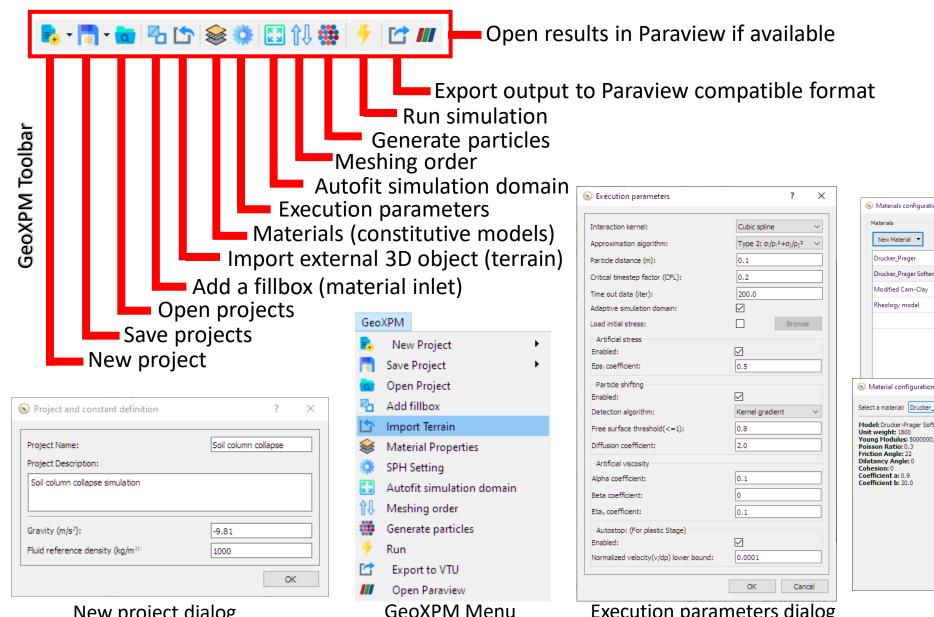

GeoXPM INTERFACE - GENERAL


Stages construction tab

	Model	Task	s	Stages				
	Add St	age	Rem	ove Last Si	tage			
`	✓ ST/	AGE O						~
	~	🗹 Act	ivate	d objects		Boundary type		
		\checkmark		ankment				
		\checkmark		ivate01				
				wate01F				
				ivate02 ivate03				
				ivate05 ivate04				
				ivate05				
				ivate06				
		\checkmark	Exca	wate07				
		\checkmark	Left			Free-slip	\sim	
		\checkmark	Back	c		Free-slip	\sim	
		\checkmark	Fron	t		Free-slip	~	
		\checkmark	Bot			No-slip	\sim	
		Time of	fsim	ulation:		5000		
	~	Type of	calc	ulation:		Elastic	\sim	
		✓ Street	ess in	itializatior	n method:	Elastic loading	\sim	
			Dam	nping:		0.02		
		\checkmark	Rese	t displace	ments to 0		_	
ſ	Prope	rty		Value				
	Base							
	✓ Pla	acemen	t	[(0.00 0.0	0 1.00); 0.00	°; (0.00 mm 0.0	0 mm 0	
		Angle		0.00 °				
		Awie		10.00.0.00	1.001			

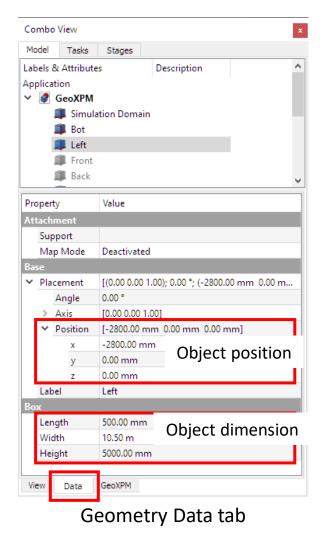
Ba	se			
✓ Placement			nent	[(0.00 0.00 1.00); 0.00 °; (0.00 mm 0.00 mm 0
Angle		ngle	0.00 °	
	>	Ax	cis	[0.00 0.00 1.00]
	\sim	Po	sition	[0.00 mm 0.00 mm 0.00 mm]
			x	0.00 mm
			у	0.00 mm
			z	0.00 mm
	Label			Embankment
Vie	ew	L	Data	GeoXPM

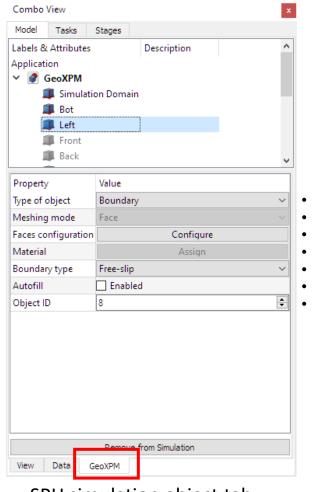
Object data tab

GeoXPM INTERFACE – TOOLBAR, MENU AND DIALOGS

New project dialog

Execution parameters dialog


Material dialogs


🚫 Meshing order configurat	ion ?	×
Embankment	A	× ^
Excavate01	~	V
Excavate01F	*	¥
Excavate02	*	>
ОК		

Meshing order dialog

	?	×	_				-						
			6	Materials conf	figuration							?	×
	Cubic spline	~		Materials				M	laterial Pro	perties			
	Type 2: σ _i /ρ _i ² +σ _i /ρ _j ²	~		New Material	•			[Model:		Drucker-Prager Soften	ng	
	0.1			Drucker_Prage	r		Û		Young N	1odulus (N/m2):	500000.0]
		_		Drucker_Prage			Û		Poisson	Ratio:	0.3]
	0.2			_	-				Friction	Angle:	22]
	200.0			Modified Cam-			Û		Dilatanc	y Angle:	0]
	\checkmark			Rheology mod	lel		Û		Cohesio	n (N/m2):	0]
	Browse	2							Coefficie	ent a:	0.9]
									Coefficie	ent b:	20.0]
	\checkmark								Unit We	ight (kg/m3):	1800]
	0.5												
			Q	Material config	uration		?		×				
	\checkmark			_									
	Kernel gradient	\sim	Sele	ct a material: D	rucker_Prager Softening	, ~	C)bjec	t Id: 0				
	0.8		Mod	lel: Drucker -Prag	ger Softening								
	2.0		You	t weight: 1800 ng Modulus: 50 son Ratio: 0.3	00000.0								
	2.0		Fric	tion Angle: 22									
			Coh	tancy Angle: 0 esion: 0									
	0.1			fficient a: 0.9 fficient b: 20.0									
	0												
	0.1											Close	
	L								-				
und:	0.0001												
	OK Cano	el				Cancel		OK					
	Carte												

GeoXPM INTERFACE – OBJECT PROPERTIES AND STAGES

Combo View Model Tasks Stages Add Stage Remove Last Stage STAGE 0 ✓ ✓ Activated objects Ticked objects will be included in stage • Boundary type Embankment Excavate01 Excavate01F Excavate02 Excavate03 Excavate04 Excavate05 Excavate06 Object type: Soil, boundary. Excavate07 ✓ Left • Meshing modes: Full, solid, face, wire. Free-slip Back Free-slip • Faces mode configuration. Front Free-slip • Assign material (model) to a Soil object \sim Bot No-slip Boundary type: non-slip, free-sip 5000 Time of simulation: • Fill the imported object with particles. Type of calculation: Elastic Object(s) ID • Elastic loading \lor Stress initialization method: Damping: 0.02 Reset displacements to 0 STAGE 1 ➤ ■ Activated objects Boundary type Embankment Excavate01 Excavate01F Excavate02 Excavate03 Excavate04 Excavate05 <

SPH simulation object tab

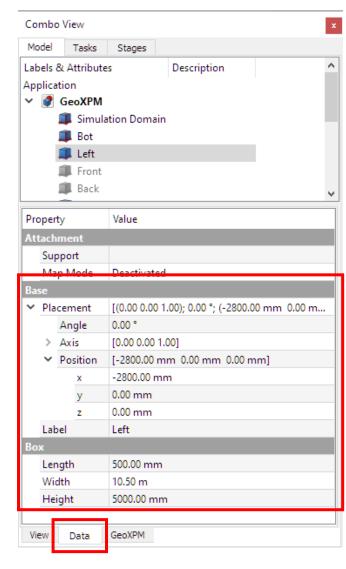
Stages construction tab

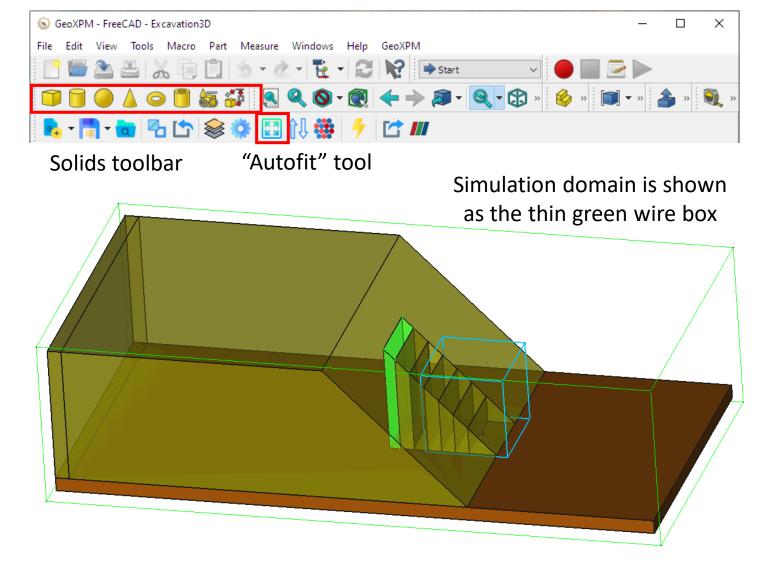
WORKFLOW

- 1. CREATE A PROJECT.
- 2. CREATE INITIAL GEOMETRY: 3 available approaches.
 - Primitive predefined objects: Cube, cylinder, sphere, cone ...
 - Sketch: Drawing complex parametric objects.
 - External Import (solids/meshes).
- 3. INPUT EXECUTION PARAMETERS.
- 4. CREATE MATERIAL MODELS.
- 5. INCLUDE OBJECTS IN SIMULATIONS AND ASSIGN MATERIAL PROPERTIES.
- 6. DEFINE **CONSTRUCTION STAGES:** elastic/plastic loading, activated objects, number of time steps.
- 7. DEFINE MESHING ORDER.
- 8. MESH OBJECTS GENERATE PARTICLES FOR CALCULATIONS.
- 9. CALCULATE
- **10. VISUALIZE RESULTS**: data extraction, data mining

WORKFLOW – 1. CREATE A PROJECT

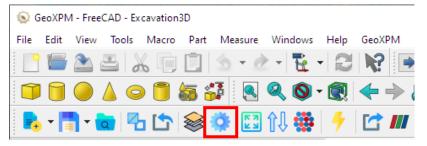
- 1. Use "New" tool to create a new project.
- 2. Enter the project's name, descriptions and basic constants.




Project and constant definition		?	×
Project Name: Project Description:	Soil column	collapse	
Soil column collapse simulation			
Soil column collapse simulation Gravity (m/s²):	-9.81		

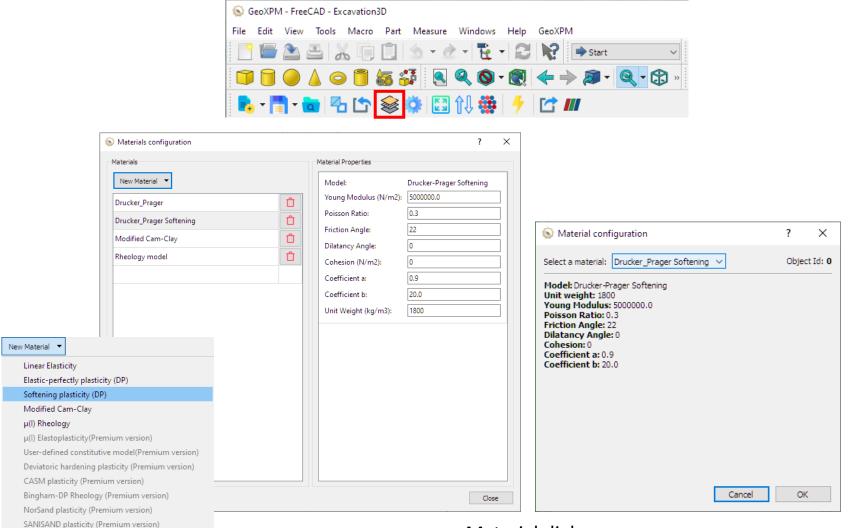
New project dialog

WORKFLOW – 2. CREATE INITIAL GEOMETRY


- 1. Use "Solids" toolbar and "Data" tab to draw soil/boundary geometries
- 2. Use "Autofit" tool to fit the simulation domain (objects outside of this domain will not be considered in simulations)

WORKFLOW – 3. INPUT EXECUTION PARAMETERS

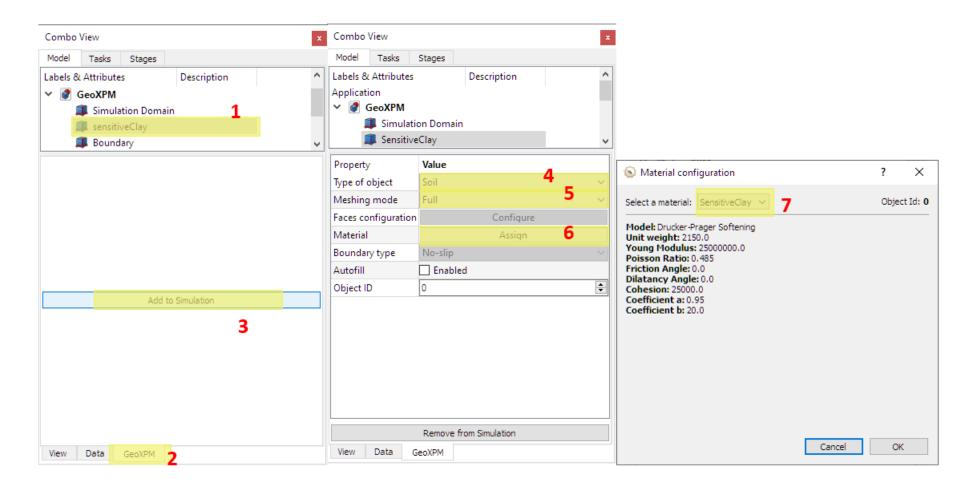
Use "Execution parameters" tool to input required parameters 1.


"Execution parameters" tool

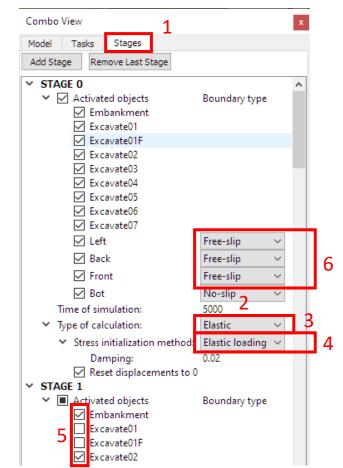
Execution parameters	? ×
Interaction kernel:	Cubic spline ~
Approximation algorithm:	Type 2: $\sigma_i/\rho_i^2 + \sigma_j/\rho_j^2 \lor$
Particle distance (m):	0.1
Critical timestep factor (CFL):	0.2
Time out data (iter):	200.0
Adaptive simulation domain:	\checkmark
Load initial stress:	Browse
Artificial stress Enabled:	
Epsi coefficient:	0.5
Particle shifting	
Enabled:	
Detection algorithm:	Kernel gradient \sim
Free surface threshold(<=1):	0.8
Diffusion coefficient:	2.0
Artificial viscosity	
Alpha coefficient:	0.1
Beta coefficient:	0
Etaq coefficient:	0.1
Autostop: (For plastic Stage)	
Enabled:	
Normalized velocity(v/dp) lower bound:	0.0001
	OK Cancel

Execution parameters dialog

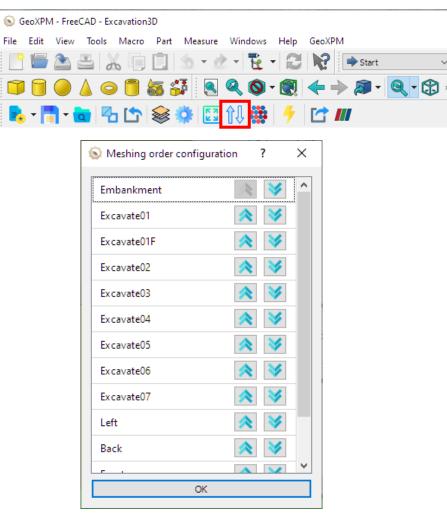
- Kernel functions: Cubic spline, Gauss, Wendland C2
- Approximation algorithm:
 - Type 1: guarantees vanishing gradient for a constant field function.
 - Type 2: pairwise-symmetry algorithm
- If enabled, The simulation domain expands with the soil domain and is limited by the "Simulation domain" object
- Artificial stress for tensile instability treatment
- Shifting criteria based on: Kernel/Kernel gradient
- Threshold for free-surface detection
- Artificial viscosity for damping system's fluctuations.
- Recommended Alpha = 0.1 for 2D and 1.0 for 3D
- Autostop condition for plastic stages. If the fastest particle has a normalized velocity lower than the set lower bound. The stage is completed.


1. Click the Material Property button, and define the material properties using your desired constitutive model.

Material dialogs


WORKFLOW – 5. INCLUD OBJECTS IN SIMULATIONS AND ASSIGN MATERIAL PROPERTIES

- 1. Choose the object you want to add to the simulation in the "Object Tree" and press "Add to Simulation" in "GeoXPM" tab.
- 2. Select "Type of object", and the "Meshing mode" in the "GeoXPM" tab.
- 3. Choose/Assign appropriate parameters depending on the selected type of object.

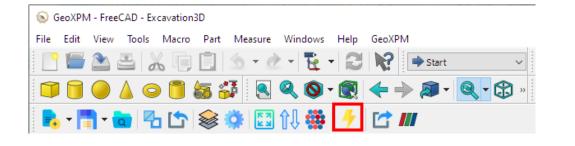

WORKFLOW – 6. DEFINE CONSTRUCTION STAGES

- 1. Go to "Stage" tab and Add or remove the required stages.
- 2. Input the number of time steps to run for each stage by double-clicking the number next to "Time of simulation".
- 3. Define the type of calculation for the stage, either Elastic or Plastic.
- 4. If the first stage (Stage 0) is Elastic, 2 methods of stress initialization will be available: K0 or Elastic loading.
- 5. Tick or untick an object to activate or deactivate that object in each stage.
- 6. Boundary type can also be changed for initial Free-slip boundaries if necessary.

WORKFLOW – 7. DEFINE MESHING ORDER

1. Click the meshing order button, and change the meshing sequence for the included objects in step 5. Note that the lower object will overwrite the upper one if there are overlaps.

Meshing order dialog

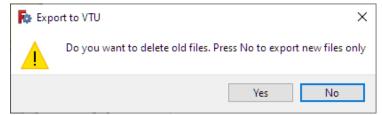

WORKFLOW – 8. GENERATE PARTICLES FOR CALCULATION

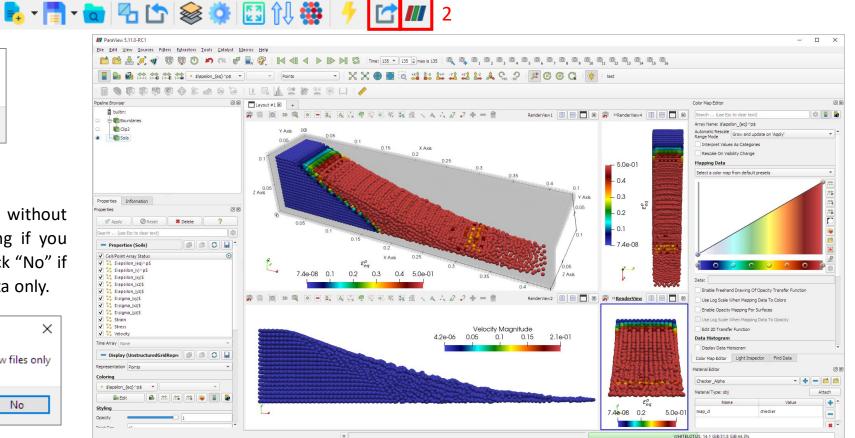
- 1. Before meshing, click the "Save" button to save the project as 2D or 3D based on your need.
- 2. Click the "Autofit simulation domain" if needed to fit all simulated objects in the Simulation domain.
- 3. Click the "Generate particles" button to mesh the computational domain.
- 4. After meshing, click "Open with Paraview" to view the particle configuration.

S GeoXPM - FreeCAD - Excavation3D	
File Edit View Tools Macro Part Measure Windows Help GeoXPM	
阿 🗍 🥥 🛦 🗢 🧻 🏭 🕵 🍳 🚫 · 🕄 🔶 🔊	
🖡 • 📑 • 🖻 🕾 🖆 😂 🏶 🔝 🔃 🦊 🗰 🦩 🖆 💷	
🗱 3D/2D Switching ? ×	
Save case as 2D:	
Cutting section Y (mm): 0.0	
Apply Save Cancel	
💀 Generate particles ? 🗙	
31761 particles was generated.	Object ID
	1.0e+00 2 3 4 5 6 7 8 9.0e+00
Open with Paraview OK	

WORKFLOW – 9. CALCULATE

1. Click the Calculation button to start the calculations.


S GeoXPM Simulation: 52.35%		?	\times
Simulation Data Case name: GranularFlow2D Total number of particles: 5750 Estimated time to complete simulation: 0:01:51.995787			
	Details	Cancel Simu	ulation
**** Particles with no interactions: 246 **** The time step is: 2.696028825619531E-005 current number of time step = 35600 current time= 0.9597862			^
<pre>>> Statistics: interactions per particle: **** Total number of activated particles: 11144 **** Particle: 1 maximal interactions: 20 **** Particle: 4704 minimal interactions: 0 **** Average: 20.89844 **** Total pairs: 47638</pre>			
**** Particles with no interactions: 246 **** The time step is: 2.696028825619531E-005			~


WORKFLOW – 10. VISUALIZE RESULTS

- 1. You can click on the tool "Export output data to VTU format" to start exporting data to Paraview any time during the simulation or after completion.
- When the export is done, click "OK" to open Paraview with already imported results. All the data can be customized and visualized from here. To reopen the exported data without re-exporting, use the "Open outputs in Paraview" button.

🔁 Export finished		×
Export to VTU finishe	d successfully. Open in Paravi	ew
	OK Cancel	
Export fi	nished dialog	

Note that if you export a second time, without re-meshing, a dialog will appear asking if you want to overwrite previous exports. Click "No" if you want to continue exporting new data only.

